

Patch Developer

Manual

 revision 243

(c) 0patch by ACROS Security, 2017

https://0patch.com

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 2 -

Contents
1. Introduction ... 3

2. 0patch Agent for Developers .. 3

3. Security Notes ... 4

4. Patches and Patchlets.. 4

5. Patching Guidelines ... 5

6. Injecting a Patchlet .. 7

7. Suitable Places for Injecting a Patchlet ... 7

8. Patchlet Import Table .. 9

9. Anatomy Of a Patch File .. 10

10. Patch File Keywords... 12

11. Building A Sample Patch .. 14

12. Final Notes ... 21

https://0patch.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 3 -

1. Introduction

Welcome to the crowdpatching community! We’re extremely happy about your interest in writing

patches with 0patch. Whether you want to patch vulnerabilities or functional bugs, or you need

some way to correct code flow during your reverse engineering efforts, 0patch aims to be the tool

for you. We hope you’ll use it to solve your, and many other people’s problems.

This document will show you how to set up your environment for writing patches, explain basic

mechanics of 0patch, and provide many guidelines and hints to get you started.

It is assumed that you are already familiar with 0patch Agent in terms of its user interface and

general functionalities. If not, it is highly recommended that you read the 0patch User Manual

available at https://0patch.com/user_manual.htm.

2. 0patch Agent for Developers

0patch Agent for Developers is a slightly modified version of 0patch Agent (which is meant for

production) and also includes a toolset needed for building your own patches. Much like 0patch

Agent, 0patch Agent for Developers gets updates from the 0patch server when a new version

becomes available. You cannot have both 0patch Agent for Developers and 0patch Agent installed on

the same computer at the same time.

Specifically, 0patch Agent for Developers differs from 0patch Agent in the following ways:

1. 0patch Agent for Developers comes with 0patch Builder, our tool for compiling 0patch source

files (.0pp files) into patch blobs that can get immediately applied to your local processes.

2. 0patch Agent for Developers doesn’t validate signatures on patch blobs before applying them

to newly-launched or running processes. This allows you to create patches locally on your

computer and also test them there without having them signed. In contrast, 0patch Agent

requires a patch to have our valid signature before applying it. Signatures are still being

validated on all agents for patches that get delivered from the 0patch distribution server –

we don’t want you to get pwned by someone breaking into the server ;)

3. 0patch Agent for Developers registers a 0patch icon for .0pp files so that you can visually

identify your patch source files, and adds two actions to the Explorer menu for .0pp files:

“Build Patch” and “Build+Debug Patch”. More on these later.

4. 0patch Agent for Developers automatically sets breakpoints on patchlet JMPs in WinDbg

using the .ocommand instruction, provided that WinDbg has the correct magic word set.

https://0patch.com/
https://0patch.com/user_manual.htm

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 4 -

3. Security Notes

Being interested in writing your own patches, you are likely sensitive to the state of security of any

software you install on your computer, and any risks it brings with it. As such, here are some things

you need to know about 0patch Agent for Developers.

1. 0patch Agent for Developers does not verify digital signatures for patches when applying

them to local processes. (If it did, you wouldn’t be able to apply your own patches as you

don’t have the signing key.) As a consequence, local malware with administrative privileges1

could store a malicious patch in the 0patch database and achieve its own persistence by

using 0patch Agent for injecting malicious code into a system process such as

winlogon.exe.

2. Beware of malicious .0pp files. 0patch Builder by design supports launching an executable

specified in a .0pp file with a debugger. Inspect every .0pp file from an untrusted source

before executing “Build + Debug” on it.

3. Beware of debugging potentially malicious processes with “Build+Debug”. To allow for

automatic setting of breakpoints, 0patch Builder instructs WinDbg to accept external

commands from the debuggee via .ocommand. This means that a malicious debuggee

(potentially running as a low-privileged user) could instruct WinDbg (potentially running as

admin) to execute an external application with arbitrary parameters, thereby elevating its

privileges. If you want to debug a malicious process, either debug it manually (not via

“Build+Debug”) or manually change the .ocommand magic word.

4. Current update procedure doesn’t (yet) preserve your “unofficial” patches in the local 0patch

database. Updating 0patch Agent for Developers (when an update becomes available) will

delete your own patches from the local 0patch database. (Yes, we’re working on that.)

Should this happen, you can simply re-build the patches from your .0pp files after the Agent

has been updated.

4. Patches and Patchlets

0patch currently supports patches that inject X86 or X64 machine code at a desired offset in a

Windows binary, and optionally jumps over a selected number of bytes to effectively remove one or

more original machine code instructions in said binary.

Each patch applies to exactly one binary, namely the binary that has the exact crypto hash specified

in the patch. (Note that you don’t see this hash in the .0pp patch source file as patch file only

specifies the path to the binary while 0patch Builder calculates the hash for you.)

A patch comprises one or more patchlets; each patchlet defines the code to be injected at a specific

offset from the binary’s base address, an optional number of original code bytes to jump over (to

1
 Yes, we know, local admin malware means game over anyway, but still…

https://0patch.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 5 -

implement removal of original code), and an optional list of functions to import from selected

binaries in order to be able to call them from the patchlet code.

Some patches - like those for typical buffer overflow vulnerabilities - only need a single patchlet,

while some others – like those for typical use-after-free vulnerabilities – need more than one.

Each patch has a globally unique ID, and each of its patchlets has a patch-wide unique ID. As a rule of

thumb, patchlets should be identified sequentially with IDs 1, 2, 3, etc. While a patch ID needs to be

globally unique when deployed to the 0patch distribution server for distribution to agents around the

World, you can use any unused patch ID during local patch development. We usually give patches

under development IDs above 10000 to avoid conflict with existing patches that arrive from the

distribution server. (This will obviously have to be revised as the number of official patches starts to

grow.)

5. Patching Guidelines

Writing a patch is a delicate endeavor. You will be changing existing machine code that was almost

certainly generated by a compiler; this is good in terms of recognizing compilers’ coding patterns,

and bad because compilers heavily optimize the code and make it more difficult to match it to the

source code (should you happen to have it).

You will first have to understand the nature and context of the bug you’re about to patch to the point

of being able to say: “Okay, I now know exactly what the problem is,” and then find a way to reliably

and efficiently fix the bug. There will generally be more than one way to fix the bug, and you will

want to find the one that has the least impact on the original code while fixing the problem in its

entirety without allowing ways to bypass it and – importantly! - without breaking anything. In

general: the less patch code the better, the fewer patchlets the better.

Always keep in mind that you’re a guest in a likely huge and complex code base that you can’t

possibly understand as well as its original developers, and your only job is to put a plug in a tiny hole

without causing any problems to original inhabitants or making their existing problems worse. This

means, for example:

1. If you change a CPU register or a local variable, you have to make sure to restore it to its

original value before letting the original code continue – unless you can prove that the

original code will not use that value any more. (E.g., if you change ecx and the original code

executing after your injected patch code also changes ecx before ever using it, it’s okay not

to restore it.)

2. If you make a call to some function from your patch code, you need to either completely

understand its side effects (e.g., modifying registers, using blocking operations that might

cause deadlocks, taking time that could cause timeouts in some other code waiting for the

patched code to finish, etc.) and prove that they are inconsequential, or make sure to

https://0patch.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 6 -

neutralize these side effects (e.g., by storing relevant registers on stack before the call and

restoring them after the call).

3. Take as little space as possible. Your patch code must be trivial to review by anyone

understanding the bug and looking at your patch. It’s not called “micropatching” for nothing.

Also, do write many comments in your patch code: any instruction can be decorated with a

comment using a semi-colon.

4. Be extremely cautious with multi-patchlet patches! While we’ve designed 0patch to allow a

patch to consist of more than one patchlet, you must be aware that it is inevitably possible

(although perhaps extremely unlikely) that when your patch is applied to an already running

process, some thread might end up executing some, but not all of your patchlets. For

instance, imagine only two patchlets: patchlet A storing some value in registry edx (which

happens not to be used anywhere else), and patchlet B subsequently taking the said value

from registry edx and using it, assuming that patchlet A has previously stored the value in it.

It can well happen that at the moment when the patch is applied, some thread’s execution is

between the two patchlets, meaning that once its execution is resumed, it will only execute

patchlet B without having previously executed patchlet A. Obviously this can quickly lead to

serious problems. So while you may find it tempting to pass data from one patchlet to

another, or to make patchlets inter-dependent in some way, you really must not. Each

patchlet must be able to execute independently, whether other patchlets have been / will

be executed, or not.

Sometimes understanding the problem or figuring out the way to fix it will take you a long time

(especially if you’re not experienced in reverse engineering), and sometimes this will frustrate you

and make you want to give up. We’re planning to release lots of material to help you with both

stages of patching (you can already find some on our blog at https://0patch.blogspot.com), and

we’re building a patching community you’ll be able to turn to for help.

https://0patch.com/
https://0patch.blogspot.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 7 -

6. Injecting a Patchlet

When 0patch Agent injects a patchlet into the original code, it overwrites 5 bytes of the original code

with a 5-byte JMP instruction that transfers code execution to the patchlet code. This is a process

well known from function hooking, where one or more original machine code instructions from the

very beginning of a function are copied (»relocated«) to another place in memory (called a

»trampoline«), while their original location is overwritten with a JMP instruction to injected code (in

our case: patchlet code). The patchlet code ends with a JMP to the trampoline in order to execute

the relocated original instructions, and the trampoline is then completed with a JMP back to the first

original code instruction after the relocated instructions.

0patch takes traditional hooking to a higher level by:

1) supporting the injection almost anywhere2 in the code, not just at the beginning of functions;

2) removing (jumping over) any number of original code instructions after the injection point,

allowing you to effectively replace existing code with your patch code, or remove flawed

code.

7. Suitable Places for Injecting a Patchlet

For several reasons, a patchlet cannot be injected just anywhere in the code:

1) Some original instructions cannot be safely relocated to another address. For example, a

short JZ with a single-byte operand at address 10000000h cannot be relocated to address

20000000h because the recalculated relative jump offset from the new address would not

fit into that single byte. The same goes for two-byte jumps, so we can only relocate 4-byte

(32-bit) jumps. This also applies to relative CALL instructions with 2-byte (16-bit) operands.

(We’re planning to provide support for all these cases in the future by replacing short relative

jumps and calls with 32-bit alternatives that can reside anywhere in the memory.)

2) A call instruction can only be safely relocated if it is the last relocated instruction; it is

possible that at the moment of patching, one of the threads would be inside a relocated call

(possibly already several further calls deeper down the call stack) and when it returns, it has

to return to the original instruction that was there when the call was executed. If the

relocated call is the last relocated instruction, we can be sure that instructions immediately

after it on its original location are intact and can be safely returned to. However, if another

instruction after the call was relocated to trampoline, it would mean that this instruction was

also at least partly overwritten by JMP Patchlet, so returning to it from a thread

2
 Not all original instructions can be relocated to a trampoline; refer to section »Suitable Places for Injecting a

Patchlet«.

https://0patch.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 8 -

currently executing the relocated call would result in executing unwanted code, almost

certainly causing functional problems. On the left image below is a suitable code block to

inject at, on the right an unsuitable code block, because the call is not the last to-be-

relocated instruction.

3) Original instructions that are a destination of any jump or call elsewhere in the original code

can only be safely overwritten with our 5-byte JMP Patchlet instruction if they are the

first relocated instruction (as that would result in the said jump or call transferring execution

to JMP Patchlet which would be okay). Any non-first overwritten original instructions

must not be a destination of any jump or call, as such jump or call would end up executing

unexpected code in the middle of the JMP Patchlet instruction. We recommend using

some powerful disassembler (e.g., IDA) to determine whether original instructions at your

potential patch location happen to be a destination of any jump or call.

4) Absolute calls and jumps can be safely relocated.

5) 32-bit relative calls can be safely relocated as we're recalculating their offset operands to

work at their relocated address.

mov eax , [es i +08h]
cal l [eax]

cal l [eax]
cmp ecx , 00000001h

mov ecx , edi
cmp ecx , es i

mov ecx , edi
cmp ecx , es i

https://0patch.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 9 -

8. Patchlet Import Table

If needed, a patchlet can make calls to functions - for instance, Windows API functions or functions in

the module it is patching. This is done by having desired functions imported to the Patchlet Import

Table (PIT) using the PIT keyword. Let’s look at some examples of imported functions in a patchlet

injected into myapp.exe.

PIT user32.dll!MessageBoxW,myapp.exe!0x7798

The above instruction makes two functions available to the patchlet (note their names start with

“PIT_” to avoid confusion with local labels):

1. PIT_MessageBoxW: The MessageBoxW function exported from Windows’ system library

user32.dll, and

2. PIT_0x7798: Location at offset 0x7798 from myapp.exe‘s base. This can be very useful

in case your patchlet implements some sanity check (e.g., for excessive height or width of an

image) and the appropriate response would be to leave the patched function: using an

import like this allows your patch to simply jump to the function epilog instead of having to

replicate said epilog, usually comprising several POP instruction, ESP manupilation and a

RET. Note that while you can use this notation to reference non-exported

functions/locations from any binary, it is only safe to reference locations from the binary

you’re patching, as this guarantees that you’re using the correct version of binary. You

wouldn’t want to reference a non-exported function from some DLL that might be different

on another user’s system.

In addition, there is one other function that is always available for calling from patchlet code:

3. PIT_ExploitBlocked: If you call this function (it takes no arguments), 0patch Agent will

display an “Exploit Attempt Blocked” popup to the logged-in user. While the dialog requires

manual closing, this function is not blocking and returns as soon as it sends out an instruction

to show the popup. (The popup is displayed by 0patch Tray.)

Some guidelines for using imported functions:

 Avoid calling functions if possible. Any function call is likely to significantly increase the

amount of code executed by your patch.

 The most safe-to-use functions are those from the module that is being patched, either

exported functions or functions you specify by offset from the module base. That module’s

code is namely always guaranteed to be the same on all computers, as the patch will not get

applied if the module’s hash does not match the hash specified in the patch.

 It may sound safe to import functions from the main executable of the patched process (e.g.,

you’re patching lib.dll that gets loaded by app.exe, and you want to import a function

from app.exe). But there are risks here: What if another executable also loads lib.dll

https://0patch.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 10 -

and your patchlet can’t find an exported function from app.exe? Worse yet, what if you’re

importing a function from offset 0x888 from app.exe, and then an update replaces

app.exe but leaves lib.dll intact? Your patchlet will still get applied to lib.dll and

will call a “function” at offset 0x888 into app.dll – this will likely not be the function you

intended to call but rather some random code.

 Even for the safest of function calls, you have to be sure that the binary you’re importing a

function from is already loaded when the module you’re patching is loaded (so that the

imported function will already be there), and that it will remain loaded until the process exits

(so that you don’t end up calling a function in an already-unloaded module, and crash).

 Be aware that Windows API functions may behave differently on different Windows versions

(and even between service packs or monthly updates). Some functions may even only exist

on newer Windows versions: RemoveDllDirectory, for instance, only exists on

Windows 8 or later and Windows Server 2012 or later. Note that a patch will not get applied

unless all imported functions from all its patchlets can be found.

 When a patched module is loaded, all its patches are copied to an internal cache, and at that

time, all PIT addresses are calculated based on the current base of the modules they refer to.

For example, if PIT includes lib.dll!function, the address of function in lib.dll is

determined using GetProcAddress and stored to the PIT. This introduces some risks you

need to consider:

o If lib.dll gets unloaded at a later time, PIT will point to an invalid address and

executing the patch code will result in a crash.

o If lib.dll is not yet loaded in the process when we find it in PIT, 0patch loader will

force load it – which will result in its dllmain() function getting executed,

provided it has one. This may have unexpected results as this function may assume it

will only get executed after some other initialization has taken place, and that may

not be the case now.

o If lib.dll is not yet loaded in the process when we find it in PIT, 0patch loader

calling LoadLibrary("lib.dll") may result in a binary planting vulnerability.

9. Anatomy Of a Patch File

A .0pp patch file is formatted in the following way:

 Patch data section: This section specifies the main parameters for the patch, such as patch

ID, the binary it patches, the vulnerability ID, and whether it’s a 32-bit or 64-bit patch. This

section is followed by one or more patchlet sections.

 Patchlet section: This section, beginning with patchlet_start and ending with

patchlet_end, specifies two things:

1. the main parameters for the patchlet, such as patchlet ID, offset for injecting the

patchlet code, optional number of bytes of original code to jump over and optional

imported functions the patchlet code is going to call;

https://0patch.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 11 -

2. patchlet code, beginning with code_start and ending with code_end, contains

patchlet’s assembly code in the NASM3 format

The following image shows an actual .0pp file for the Foxit Reader FlateDecode Use-After-Free

vulnerability ZDI-16-3924. You can see that it begins with a Patch data section, which is followed by

two Patchlet sections. (We patched this use-after-free vulnerability by sabotaging the free and

marking the not-freed buffer with a “BADBAFFA” marker, then catching this marker at use and

preventing its use.)

3
 http://www.nasm.us

4
 http://www.zerodayinitiative.com/advisories/ZDI-16-392/

https://0patch.com/
http://www.nasm.us/
http://www.zerodayinitiative.com/advisories/ZDI-16-392/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 12 -

10. Patch File Keywords

Patch Data

Keyword Mandatory Description

RUN_CMD No Full path to the executable you want to have launched
when selecting “Build+Debug” from the shortcut menu
on a .0pp file. 0patch Builder will launch this executable
in WinDbg debugger.

MODULE_PATH Yes Full path to the binary to be patched. 0patch Builder
calculates a crypto hash from the content of this file and
stores both filename (without path) and this hash to the
patch blob. The patch will only be applied to binaries with
the same name and the same hash.

PATCH_ID Yes Unique identifier for this patch. If a patch with this ID
already exists in your local 0patch Agent’s database, that
patch will be overwritten with this one when you build it.

PATCH_FORMAT_VER Yes The only supported format version at this time is 2.

VULN_ID Yes ID of the vulnerability this patch is fixing. If a vulnerability
with this ID exists in your local 0patch Agent’s database,
its title and CVE ID will be shown in the 0patch Console
and on 0patch popups. If you don’t know this ID, we
recommend using some arbitrary large value such as
10000.

PLATFORM Yes win32 for 32-bit binaries or win64 for 64-bit binaries

Patchlet Data

Keyword Mandatory Description

PATCHLET_ID Yes Unique identifier for this patchlet inside the patch. Make sure
that each patchlet in a patch has a different ID; we
recommend using 1, 2, 3…

PATCHLET_TYPE Yes The only supported patchlet type at this time is 2.

PATCHLET_OFFSET Yes Offset from the base of the module where the patchlet is to
be injected. The patchlet gets injected before the instruction

https://0patch.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 13 -

at this offset, while the said instruction (and if needed,
subsequent instructions) gets relocated to another place in
memory where it will be executed after the patchlet code.
This value can be either in hex (0xAAAAAAAA format) or
decimal (AAAAAAAA format). We recommend using hex
format.

N_ORIGINALBYTES No The number of original bytes at the PATCHLET_OFFSET
location that get verified before the patchlet is applied.
Default value is 5, which is all bytes overwritten by our “jump
to patchlet” instruction.
The only use cases for setting this value we know of are:

1) injecting at a location of a JUMP or CALL that gets
relocated by Windows according to the PE relocation
table (in this case we set N_ORIGINALBYTES to 1
as only the instruction code is constant);

2) injecting at a location where the to-be-patched code
does not exist in its final form at module load time –
e.g., is either decrypted or decoded after the module

loads (in this case we set N_ORIGINALBYTES to 0).

JUMPOVERBYTES No The number of bytes of the original code we want to jump
over (i.e., effectively remove) after the execution of patchlet
code is completed. Default value is 0, which means we want
to keep all of the original code. If you set this value, you must
make sure that the number of bytes you specify corresponds
to the actual length of original instructions from the

PATCHLET_OFFSET location forward. For instance, you can
use JUMPOVERBYTES 3 for jumping over two instructions
xor eax, eax (2-byte instruction) and inc esi (1-byte
instruction) located at PATCHLET_OFFSET.

PIT No Patchlet import table – allows you to specify exported
functions or offset-based locations, either in the module
you’re patching or some other module. Format is:

PIT

<module_name1>!<function_name_or_offset1>,

<module_name2>!<function_name_or_offset2>,

...

See section 9 for more information.

code_start

code_end

Yes Non-empty patchlet code (to be injected right after the
original code instruction at PATCHLET_OFFSET) must be
located between these two keywords; the code must be in
NASM format as it’s being compiled by NASM.

https://0patch.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 14 -

11. Building A Sample Patch

This section will guide you through the process of building a sample patch. You’ll need the following

setup before you begin:

1) A Windows computer with one of the following Windows versions5:

a. Windows 10 64-bit

b. Windows 8.1 64-bit

c. Windows 7 64-bit

d. Windows 7 32-bit

e. Windows XP 32-bit

2) The latest version of 0patch Agent for Developers must be installed and registered on your

computer. You can download the agent installer from

https://dist.0patch.com/download/latestagentdev. After successful installation, you will be

prompted to register your agent when the 0patch Console is launched for the first time. Use

your existing 0patch account credentials if you already have one, or register a new account at

https://dist.0patch.com/User/Register.

(Note that if you currently have 0patch Agent installed, you will need to manually uninstall it

and install 0patch Agent for Developers; while they share much of the code base, these are

two distinct products. If unsure about which Agent you have installed, look at its version

number: if the last five digits look like “2xxxx”, it is 0patch Agent for Developers, otherwise it

is the production 0patch Agent.)

3) 0patch Agent for Developers sample package must be unpacked on your computer in a

folder of your choice. The package can be downloaded from

https://0patch.com/files/DevAgentSamplePackage.zip.

4) WinDbg must be installed if you want to use the “Build+Debug” feature. On 64-bit systems,

we recommend installing both 32-bit and 64-bit WinDbg. We are officially supporting the

following WinDbg versions6:

a. WinDbg 6.12.2.633 on pre-Windows 7 systems

b. WinDbg 6.3.9600.16384 on Windows 7 and newer systems

5) System-wide WinDbgDir_ environment variable(s) must be set if you want to use the

“Build+Debug” feature:

a. On 32-bit and 64-bit systems, WinDbgDir_x86 environment variable must be set

to the directory of 32-bit windbg.exe; for the default installation location of 32-bit

WinDbg 6.3.9600.16384, you can use the following command to set this variable:

5
 Other Windows versions back to Windows XP and Windows Server 2003 likely work as well, although we have

experienced problems with deploying a patch to registry on Vista.
6
 Other WinDbg versions are likely to work well too, but there may be some differences in options, flags or

features that could cause incompatibility issues.

https://0patch.com/
https://dist.0patch.com/download/latestagentdev
https://dist.0patch.com/User/Register
https://0patch.com/files/DevAgentSamplePackage.zip

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 15 -

setx WinDbgDir_x86 "C:\Program Files (x86)\Windows

Kits\8.1\Debuggers\x86"

b. On 64-bit systems, WinDbgDir_x64 environment variable must be set to the

directory of 64-bit windbg.exe; for the default installation location of 64-bit

WinDbg 6.3.9600.16384, you can use the following command to set this variable:

setx WinDbgDir_x64 "C:\Program Files\Windows

Kits\8.1\Debuggers\x64"

Having all the above, you’re ready to start. Let’s go!

Step #1: Launch SmokeTest_x86.exe

SmokeTest_x86.exe (part of the sample package you have downloaded) is our sample

executable that does one thing only: it pops up a “Hello World!” message box. Double-click this

executable and notice the message, then close it.

Step #2: Build a patch

ZP-SmokeTest_x86.0pp is a patch source file for patching SmokeTest_x86.exe by simply

injecting a call to PIT_ExploitBlocked, which should result in displaying a 0patch “Exploit

Attempt Blocked” popup when the test executable is executed.

Right-click on ZP-SmokeTest_x86.0pp and select “Build Patch”. A command interpreter

(cmd.exe) window shortly appears, then a UAC prompt is displayed asking your permission to

launch Registry Editor. Confirm the UAC prompt. The command interpreter window closes.

If everything went well, you have just created a patch with ID 20000 for SmokeTest_x86.exe.

Open the 0patch Console and find patch #20000 at the end of the list in the “PATCHES” tab. You’ll be

able to disable and enable this patch there from now on.

https://0patch.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 16 -

Step #3: Launch patched SmokeTest_x86.exe

Double-click SmokeTest_x86.exe and notice that, in addition to the “Hello World!” message

box, an “Exploit Attempt Blocked” popup also appears as a result of your patch injecting a call to

PIT_ExploitBlocked in the code of the testing executable.

https://0patch.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 17 -

Step #4: Build + Debug a patch

Right-click on ZP-SmokeTest_x86.0pp and select “Build+Debug Patch”. A command interpreter

(cmd.exe) window shortly appears, then a UAC prompt is displayed asking your permission to

launch Registry Editor. Confirm the UAC prompt. The command interpreter window closes and

WinDbg is launched, attached to a newly-launched SmokeTest_x86.exe, as shown on the image

below.

https://0patch.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 18 -

Make sure the focus is on WinDbg's Command window and press F5; WinDbg should continue with

execution and stop on breakpoint 200001 at a JMP instruction, as shown on the image below. This is

the exact JMP instruction 0patch Agent has put in the original code to inject the patchlet code.

As you can see, WinDbg first received an external command (via .ocommand from 0patch Agent

running inside the debuggee) for setting breakpoint #200001 at location 0x00401000, which is the

location where we inject our patchlet code. Subsequently, as execution continued, this breakpoint

was hit.

https://0patch.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 19 -

Step over the JMP instruction to get into the patchlet code, as shown on the image below. As you

can see, the patchlet code consists of a single call (to PIT_ExploitBlocked), after which there if

a JMP to the original instructions that were relocated before the Agent overwrote them with the

JMP to patchlet code.

Step over the CALL to see the “Exploit Attempt Blocked” popup.

https://0patch.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 20 -

Finally, step over the JMP to see how execution continues with the relocated original code. As you

can see on the image below, the original code consists of two PUSH instructions; 0patch Agent had

to relocate them both as the first one takes up only 2 bytes and the JMP to patchlet code needs 5

bytes. After the relocated PUSH instructions, you can see a JMP to the original code immediately

following the original location of these two relocated instructions.

https://0patch.com/

(c) 0patch by ACROS Security, 2017
https://0patch.com

- 21 -

12. Final Notes

If you’re as passionate about fixing vulnerabilities as we are, you will want to get to the point of

writing production-quality patches that can actually be distributed to millions of endpoints

around the World and potentially applied even before the attackers had enough time to build

reliable exploits. We’re working hard on building the infrastructure to allow you to submit your

patches for an independent quality and security review, and finally have them distributed to

users for a decent compensation.

Do let us know about your experience with building patches. We’ll appreciate your suggestions,

ideas, criticism and bug reports, as well as words of encouragement. We’re building this product

for you and we need your input to make your work easier and more efficient. Your comments on

our documentation are also highly welcome. Email us at support@0patch.com.

13. Troubleshooting

Problem: Disabling a patch while the patched process is being debugged with WinDbg results in a
»Unable to insert breakpoint« WinDbg error.

Solution:
1. This is a bug in our code, waiting to be fixed. Until it is fixed, avoid disabling a patch during

debugging.

Problem: Building a 0pp file results in a »Buffer out of bounds« error in the last line of the file.

Solution:
1. This is a bug in our code, waiting to be fixed. As a workaround, make sure that your 0pp file does

not have any empty lines at the end.

https://0patch.com/
mailto:support@0patch.com

